\(\int \frac {1}{(a+b \sin (c+d x))^{3/2}} \, dx\) [55]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 14, antiderivative size = 111 \[ \int \frac {1}{(a+b \sin (c+d x))^{3/2}} \, dx=\frac {2 b \cos (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sin (c+d x)}}+\frac {2 E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{\left (a^2-b^2\right ) d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}} \]

[Out]

2*b*cos(d*x+c)/(a^2-b^2)/d/(a+b*sin(d*x+c))^(1/2)-2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d
*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/(a^2-b^2)/d/((a+b*sin(
d*x+c))/(a+b))^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2743, 21, 2734, 2732} \[ \int \frac {1}{(a+b \sin (c+d x))^{3/2}} \, dx=\frac {2 b \cos (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sin (c+d x)}}+\frac {2 \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}} \]

[In]

Int[(a + b*Sin[c + d*x])^(-3/2),x]

[Out]

(2*b*Cos[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Sin[c + d*x]]) + (2*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*
Sqrt[a + b*Sin[c + d*x]])/((a^2 - b^2)*d*Sqrt[(a + b*Sin[c + d*x])/(a + b)])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2743

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((a + b*Sin[c + d*x])^(n
+ 1)/(d*(n + 1)*(a^2 - b^2))), x] + Dist[1/((n + 1)*(a^2 - b^2)), Int[(a + b*Sin[c + d*x])^(n + 1)*Simp[a*(n +
 1) - b*(n + 2)*Sin[c + d*x], x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && Integ
erQ[2*n]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b \cos (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sin (c+d x)}}-\frac {2 \int \frac {-\frac {a}{2}-\frac {1}{2} b \sin (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx}{a^2-b^2} \\ & = \frac {2 b \cos (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sin (c+d x)}}+\frac {\int \sqrt {a+b \sin (c+d x)} \, dx}{a^2-b^2} \\ & = \frac {2 b \cos (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sin (c+d x)}}+\frac {\sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{\left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}} \\ & = \frac {2 b \cos (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sin (c+d x)}}+\frac {2 E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{\left (a^2-b^2\right ) d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.78 \[ \int \frac {1}{(a+b \sin (c+d x))^{3/2}} \, dx=\frac {2 b \cos (c+d x)-2 (a+b) E\left (\frac {1}{4} (-2 c+\pi -2 d x)|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{(a-b) (a+b) d \sqrt {a+b \sin (c+d x)}} \]

[In]

Integrate[(a + b*Sin[c + d*x])^(-3/2),x]

[Out]

(2*b*Cos[c + d*x] - 2*(a + b)*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b
)])/((a - b)*(a + b)*d*Sqrt[a + b*Sin[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(442\) vs. \(2(138)=276\).

Time = 0.37 (sec) , antiderivative size = 443, normalized size of antiderivative = 3.99

method result size
default \(\frac {2 a^{2} \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, F\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right )-2 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, F\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{2}-2 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, E\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{2}+2 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, E\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{2}-2 \left (\sin ^{2}\left (d x +c \right )\right ) b^{2}+2 b^{2}}{b \left (a^{2}-b^{2}\right ) \cos \left (d x +c \right ) \sqrt {a +b \sin \left (d x +c \right )}\, d}\) \(443\)

[In]

int(1/(a+b*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/b*(a^2*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Ellipt
icF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))-((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b
))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^2-((a
+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*si
n(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2+((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)
*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^2-sin(d*x+c)^
2*b^2+b^2)/(a^2-b^2)/cos(d*x+c)/(a+b*sin(d*x+c))^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 486, normalized size of antiderivative = 4.38 \[ \int \frac {1}{(a+b \sin (c+d x))^{3/2}} \, dx=\frac {6 \, \sqrt {b \sin \left (d x + c\right ) + a} b^{2} \cos \left (d x + c\right ) + {\left (\sqrt {2} a b \sin \left (d x + c\right ) + \sqrt {2} a^{2}\right )} \sqrt {i \, b} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right ) + {\left (\sqrt {2} a b \sin \left (d x + c\right ) + \sqrt {2} a^{2}\right )} \sqrt {-i \, b} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right ) + 3 \, {\left (-i \, \sqrt {2} b^{2} \sin \left (d x + c\right ) - i \, \sqrt {2} a b\right )} \sqrt {i \, b} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right )\right ) + 3 \, {\left (i \, \sqrt {2} b^{2} \sin \left (d x + c\right ) + i \, \sqrt {2} a b\right )} \sqrt {-i \, b} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right )\right )}{3 \, {\left ({\left (a^{2} b^{2} - b^{4}\right )} d \sin \left (d x + c\right ) + {\left (a^{3} b - a b^{3}\right )} d\right )}} \]

[In]

integrate(1/(a+b*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/3*(6*sqrt(b*sin(d*x + c) + a)*b^2*cos(d*x + c) + (sqrt(2)*a*b*sin(d*x + c) + sqrt(2)*a^2)*sqrt(I*b)*weierstr
assPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x +
 c) - 2*I*a)/b) + (sqrt(2)*a*b*sin(d*x + c) + sqrt(2)*a^2)*sqrt(-I*b)*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)
/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a)/b) + 3*(-I*sqrt(2)
*b^2*sin(d*x + c) - I*sqrt(2)*a*b)*sqrt(I*b)*weierstrassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*
b^2)/b^3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c)
 - 3*I*b*sin(d*x + c) - 2*I*a)/b)) + 3*(I*sqrt(2)*b^2*sin(d*x + c) + I*sqrt(2)*a*b)*sqrt(-I*b)*weierstrassZeta
(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/
27*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a)/b)))/((a^2*b^2 - b^4)*d*sin
(d*x + c) + (a^3*b - a*b^3)*d)

Sympy [F]

\[ \int \frac {1}{(a+b \sin (c+d x))^{3/2}} \, dx=\int \frac {1}{\left (a + b \sin {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(1/(a+b*sin(d*x+c))**(3/2),x)

[Out]

Integral((a + b*sin(c + d*x))**(-3/2), x)

Maxima [F]

\[ \int \frac {1}{(a+b \sin (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(a+b*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sin(d*x + c) + a)^(-3/2), x)

Giac [F]

\[ \int \frac {1}{(a+b \sin (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(a+b*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*sin(d*x + c) + a)^(-3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \sin (c+d x))^{3/2}} \, dx=\int \frac {1}{{\left (a+b\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(1/(a + b*sin(c + d*x))^(3/2),x)

[Out]

int(1/(a + b*sin(c + d*x))^(3/2), x)